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Beijing Olympics

* Two weeks until the Beijing Olympics.
* Preparations are in full swing under strict infection control measures.

Previous ChinaVis conferences
P =

( The 9th China Visualization and Visual Analytics Conference, Xining, July

24-27, 2022

The 8th China Visualization and Visual Analytics Conference, Wuhan, July 24-27, 2021
The 7th China Visualization and Visual Analytics Conference, Xi'an, July 18-21, 2020

BEI/ING 2021 The 6th China Visualization and Visual Analytics Conference, Chengdu, July 21-24, 2019
The 5th China Visualization and Visual Analytics Conference, Shanghai, July 26-28, 2018
O The 4th China Visualization and Visual Analytics Conference, Qingdao, July 17-19, 2017
The 3rd China Visualization and Visual Analysis Conference, Changsha, July 21-23, 2016
The 2nd China Visualization and Visual Analytics Conference, Tianjin, July 17-18, 2015
The 1st China Visualization and Visual Analytics Conference, Beijing, July 19-20, 2014
4th Visualization Workshop 2013, Beijing, July 12-13, 2013
2011 3rd Visualization Symposium, Beijing, July 23, 2011
q.’ 2009 Second Visualization Symposium, Beijing, April 23, 2009
U’ 2008 First Visualization Workshop, Beijing, June 24, 2008

Bxjing 2008

ele’s

Visualization plays a more important role in achieving
“together for a shared future"

International forum



Chinavis

* |taims to improve the communication of the Visualization and Visual
Analytics communities in China and surrounding regions.

* Itis astrong international conference (acceptance rate of 29.4%(42/143,
2021))
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Content

How does our visual data science research meet Al?

e Al-enhanced visualization (Al4VIS)

1. 3-D book data page segmentation and extraction
2. Visualization of plasma shape in the |hd-type helical fusion reactor

e Surrogate model
e Visualization-enhanced Al (VIS4Al)

1. PDE derivation from spatio-temporal data
2. PDE solution from spatio-temporal data

International forum



Point data in a spatio-temporal space

I

// spatio- temporal data \

®
® u(ty, x1,¥1,21)
[ ] . .
@ } ®  ultyx,yi,z) ® ,{
— o
® u(thrpr’pr:ZNp)

\ ® u(ty, X2, ¥Y1,21) /

* Physical quantity measured at a certain spatial position at a certain fixed time
u(ti,xj,yj,zj),i =1,N,j=1M
* Data obtained at a certain spatiotemporal position
uty, x;,yi,2), i = 1L,N
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Data visualization

Triangular mesh

Line segment

¢ °
o °
Point
? Volume“enuering
\ Volume data I Geometry data e Image data
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Local interpolation

/ spatio-temporal data \

® u(ty, X1, Y1, 21)
® o
®  u(ty,x,yizi) e >

u(th, XNy YNy ZNp)

o
\ ®  u(ty,x2,5227) /
[ Generation of mesh }

geometry u(xz, ¥2)

[ Location of a given point }

If the point, u(t, x,y, z), is located inside the j-th simplex, then

5
u(t,x,y,z) = Z 1Nj(ti'xi'yi»Zi)uj(ti'xi'yi'Zi)
i=

International forum



Global approximation
/ spatio-temporal data \

o
® u(ty, X1, Y1, 21)
® 9
® ultyx,yuz) ®

®
u(th, XNy YNy ZNp)

®  u(tyx2,y1,21) /

®
[ Regression of spatio- } ./

temporal data as input

minimizing a loss function

Parameter approximation }

[ Neural network(NN) model ]

, 1
argmin{MSE, (o)} MSEy =+ lu = a3
u

L+1 L " o1 N 0 o0
u(t,X,y,Z) =u] =0 z Wl'jo- - Wi,j e O z 1Wi’jui see
i= i=
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Universal Approximation Theorem in Neural Networks
G.Cybenko ,"Approximation by Superpositions of a Sigmoidal Function,” 1989

Abstract. In this paper we demonstrate that finite linear combinations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit

hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approximated by continuous feedforward neural networks with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.
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NN model visualization

To visualization of NN models in a spatio-temporal space,

1. Regular grid generation /

* Prepare grids with an adequate resolution

* Evaluate a function value at each grid point

 Employ Marching cubes

2. Render the NN model using particles e * e
* Sample points in a spatio-temporal space ' ©

 Employ particle-based volume rendering > @

_______________

3. Ray-trace the NN model without grids

e (Castarayin aspatio-temporal space

* Integrate the NN model along the ray




Regular grid generation

X

-

S

> ")I“\ﬁ

d

volume = []
for i in range(0, 10):
for j in range(0, 10):
for k in range(0, 10):
for 1 in range(0, 10):
volume.append(u(i, j, k, 1))

L SR A et g 0 " 0.0
u(t,x,y,z) =0 z wijo"" Z wij~ 0 Z wiiu; | -
i=1 i=1 i=1
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Particle-based volume rendering

K. Zhao et. al, "INTERACTIVE VISUALIZATION OF LARGE-SCALE 3D SCATTERED DATA FROM A TSUNAMI
SIMULATION," International Journal of Industrial Engineering 24(2), p207-219.

Color palette
Polygon Opacity

0

file:/Users/breeze/Data/1f_in/ro2//0
of particles: 6487306
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Particle-based volume rendering (PBVR)

* Generate a set of opaque particles
* Project the particles onto an image plane
e Use an ensemble average

<—[ Ensemble average ]——[ Particle projection ]—[ Particle generation ]—
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PBVR for point data

=
Volume
data
-
4 : ) : : L
Opacity update Particle density estimation
L
Particle density - y
estimation Opacity update
| log(l —a) Particle radius
P | mr2ac modification
[ Particle generation ] "1_ ’M
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Al-ENHANCED VISUALIZATION
(AI4VIS)



Al-enhanced data visualization
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3-D BOOK DATA PAGE
SEGMENTATION AND EXTRACTION



Introduction

Background

* Inrecent years, research cases using CT scanning equipment have been published
regarding the decoding of ancient documents that cannot be opened.

* We are developing an analysis method for digitized literature, assuming that the
literature is a booklet.

Attention: Historical literature
x? '";, .2’.4 ‘

V:"léé '17W

i

ua‘?“

i .
¢ 4 LJ‘ Eryail v
F i g

Damage caused by aging, fire, and flood damage in the literature

Research question: How can we extract page information from 3-D booklet data?

Proposed method: If we define a scalar field corresponding to the number of pages,
generate an iso-surface, and map the booklet data on it, the question can be

answered. ,
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Proposed method

Generation of two volume datasets

 3-Dimage data from scanned booklet

 Page volume data from annotated points in the 3-D image data

Booklet

CT Scan

Page data

»
P

3D image
data

Annotation

Data mapped iso-surfaces

Point data

Neural

network
(NN)

F

Page volume
data

J. Ou, Z. Han, K. Koyamada, "Three-dimensional book data page segmentation and extraction method using
Laplace equation,"Journal of Advanced Simulation in Science and Engineering, 8(2), pp. 223-236, 2021



Overview




Digitalization of a booklet using 3-D CT

How can we digitalize a booklet?

Booklet 3-DCT 3-D image data
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Annotation of 3-D image data

How can we annotate page numbers in a 3-D CT scanned document ?

indexX

indexY

indexZ
| Lower Threshold
Upper Threshold]

Window Low

Window High

Rotate

Page

Output the Table

Radius

k Close Controls

3-D image data Annotation tool Point data
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Generation of page volume data

How can we generate page volume data from Point data?

Point data

Neural network

International forum

Page volume data




Mapping 3-D image data onto page surface

How can we represent the page information on the page surface?

Wi

3-D image data

Page surface data

Printed page data
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Results

Comparison with Laplace's equation model

Page 3 boundary in CT image (bright)

LI W T W W =ww

noiiesilel

Laplace equation PointNet-based model Text (ground trues)
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VISUALIZATION OF PLASMA SHAPE IN
THE LHD-TYPE HELICAL FUSION REACTOR



Large Helical Device (LHD)

Overview

* The LHD is one of the world's largest helical devices with superconducting coils that can generate a
strong magnetic field on a regular basis.

* In order to stably confine plasma in a magnetic field container (a basket of magnetic field lines), an
infinitely circulating magnetic field line with no end is required to close an escape route for particles.

* In addition, in order to create a donut-shaped cage with these lines of magnetic force, it is necessary
to add a twist to the lines of magnetic field.

* Heliotron configuration has excellent steady-state operation capability because the magnetic field
configuration necessary for confining the plasma can be formed using only a pair of helical external
coils.




Plasma regions

Cross section of LHD vacuum vessel and structure of magnetic field lines.

The main structure is the "confinement region" where the plasma is confined by the cage of the
magnetic field lines,

The "ergodic region" around it, and the "divertor leg" that connects the layer and the "divertor
plate". The divertor ejects impurities and the plate catches them.

Confinement area

Divertor plate

Divertor plate
Divertor

: /& N\ | Divertor
e /N AREEIA
g ’

I Ergodic layer

I Carbon impurity ion

4 Magnetic

l / field line
Force to push \
; Py y Force to pull

back to divertor (Q) into the plasma




Introduction

Background

* Visualization of the plasma region is indispensable for understanding the
relationship with structures in the maintenance of fusion reactors.

Relationship between fusion reactor structure
Magnetic field lines in a fusion reactor and plasma region

Research question: How can we derive a plasma region from a set of magnetic field lines?

Proposed method: If we define a scalar field from a set of magnetic field lines, the question
can be answered.



Proposed method

Using NN model, generation of two volume datasets
* Confinement volume data

e Ergodic volume data

s N
Magnetic | Tracer | Magnetic Annotation | Annotated
field | lines points
NN
ergodic
Plasma // volume data NN
region Iso-surface
data confinement
volume data
o /)

K. Hu, K. Koyamada, H. Ohtani, T. Goto, J. Miyazawa, Visualization of plasma shape in the |hd-type helical
fusion reactor, ffhr, by a deep learning technique, Journal of Visualization 24 (6) (2021) 1141-1154



Overview

Inspecting the interference
in a fusion reactor, FFHR, by
an artificial neural network

Outer Vertical

Coils Cryostat

Inner Vertical St‘:pporﬁng
, Coils Structure

Figure |:Schematic of the
FFHR-d| series fusion reactor.

— Blanket

q» Poloidal coil

Divertor

Helical coill

Figure 2: Poloidal cross-section
of the FFHR at horizontally
elongated plasma cross-section.

Figure 3: Rendering of all the magnetic field lines
with transparence. In the grey frame, it shows
two magnetic field lines with their Larmor radius.

Figure 4:Two magnetic field lines in 3D
space with oblique view and top view.



Annotation of magnetic lines

How caw we extract page information from a 3-D CT scanned document ?

P & / -
4 . ;g ) N\ ;
pommq o /
Magnetic lines Annotation tool Point data
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Automatic Differentiation(AD)

AD is a set of techniques to evaluate the derivative of a function
specified by a computer program.

The partial differential term uj“'l in the (L + 1)-th layer by uiL_l in the (L-1)-th

layer can be calculated using the chain rule as follows.

o
r:th ? L+1 ny L+1

L
3 g uy ™" 0w dug,
= 0 L-1 0 L 0 L—-1
e 0 U: u Uu:
9—':- — l m m l
o °
S

In the NN model, if this relation is applied such that the layers propagate back using the chain
aul_,+1
]

0
6ui

rule, the first-order term can be calculated. Here, u? represents spatiotemporal

coordinates (t, x).

aujL+1_ ou _7”1 ynz yns Z“Laufﬂ ouk, oud, \ 0u?, \ oul,
3 = \a) = 2 | 2 | 2 |\ 2 5 07 ) )32 ) 3 ) 2




Proposed technique

Add an inner product of gradient and magnetic field line direction term to the
loss function

P\ 1
/ 2 1 MSEy, =N—|I®Bllz
T p
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SURROGATE MODEL



Engineering simulation

1. Engineering method has used the surrogate model when an outcome of
interest cannot be easily directly measured, so a model of the outcome is
used instead

2. Most engineering design problems require experiments and/or simulations
to evaluate design objective and constraint functions as a function of design
variables.

3. Surrogate model requires a diversity of input, including boundary conditions

Deep Neural Network (DNN)

An Exemplar Application: Realtime Stress Analysis
Input: Geometry and Blood Pressure; Output: Stress in 1s

Von Mises Stress
FE Output DNN Output l S O00 400

313

£ 226.01

l 139.01
5.202e+01

The average discrepancy is 0.492%

Liang Liang, Minliang Liu, Caitlin Martin, and Wei Sun. A deep learning approach to estimate stress distribution: a
fast and accurate surrogate of finite element analysis. Journal of The Royal Society Interface, 2018.
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Compact model

A. Okamoto, et. al, 2020

Top fillet: Top fillet:

(—

Fig.l1 Analysis model

Table 1 Parameter of optimization

Step size
Min Max (Number
of levels)
Angle of S6 5
Salient 2 160 (80)
Rotor[°] Go
Top fillet R_SU
[mm] R GU 05
0.5 8
Bottom R_SD (16)
Fillet
[mm] R GD
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Features of surrogate model

Instantly predict analysis results by machine learning instead of numerical
simulation(NS)

Realizing an environment where you can enjoy the power of NS at the
design

Free from resource shortage by ultra-high-speed NN calculation

Keep in mind the physical consideration of the prediction results

The validity of the surrogate model is especially important

|

Reference to Partial Differential Equation(PDE) is essential
for physical validity




Partial Differential Equation(PDE)

A differential equation

* in which an unknown function is a function of two or more variables

* which includes partial differential coefficients related to these of
unknown functions

is called a PDE.

PDEs are often used in the field of natural science to describe natural

phenomena related to fields such as fluids, gravitational fields, and
electromagnetic fields.

{ Partial differential terms can be calculated by AD }

E How can we refer to PDEs? }
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NVIDIA MODULUS (SIMNET)

https://developer.nvidia.com/blog/nvidia-announces-modulus-a-framework-for-developing-physics-mI-models-for-digital-twins/

* A Framework for
Developing Physics
Machine Learning Neural
Network Models

* Features

* Novel Neural Network
Architecture

* Design Space
Exploration

e Optimized for Multi-
Physics Problems
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VISUALIZATION-ENHANCED Al
(VIS4Al)



Visual data science research

PDE DERIVATION FROM SPATIO-TEMPORAL DATA
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PDE derivation

Background

* Explanatory models that use existing PDEs are very important for the
utilization of big data from a variety of new phenomena, including new
corona infections.

Measurement data Partial differential equations governing the data

[ spatio-temporal data \
e

* - u(ty, X1, ¥1,%1)
Y

® ulty,x,yiz)®
P

°
u(ty,, XN, YN, ZN,,)

\ e u(tz'xz;yz;zzy

¢ + 5.87759utz +0.9571562us2: =0 | |

Research question: Can we derive a PDE from discrete spatio-temporal data?

Proposed method: If we add a regularized regression error term to the loss function,
the question can be answered.



Proposed method

Derivation of partial differential equations(PDEs) from spatio-temporal data
 Pseudo measurement data from exact/FDM/FEM solution of PDE

e Partial differential terms from predefined library

 Coefficients determined using regularized regression analysis

Spati Partial

pacio- -+ NN model — differential
temporal data

terms

Regularized _
fficients [+ regression |+ Regression
Coefficients equation

model

K.Koyamada, et al.,"Data-driven derivation of partial differential equations using neural network model,"
IIMSSC, 12/2, 2021



Overview

DATA SOURCE: 3D Advection-Diffusion Equation

NN Model Configuration

[ Neurons: 10 100 | [ Layers:1— 10 |

Point Data Size: 20000
(discrete point)

Method: Derivation |candidate library exp result LOSS= NN error+ RREX
display

Isosurface Comparison NN structure sample | giot
—Select NN— v | B 0.00%

PDE Derivation




NN model from Spatio-temporal points

/ Spatio-temporal points \
®

( ™
[Exact} [ FDM } [ FEM }B
U= (1 u, Uy Uz Upx Uyy Ugp) :ZZ
Fupy 1 -
\ fuss/ ) MSE, :N_u”u_u”z
Spatio-temporal points NN model
it + [ forum




Partial differential terms from NN model

t Uy Uy Uy Uyy UyyUy,

NN model Partial differential terms
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Regression equation from partial differential terms

t Ux Uy Uy Uyxy Uyy Uy,

i &

.

/ Spatio-temporal points \
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e (tZIXZJylrzl)
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Partial differential terms
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Regression equation




Regularized regression equation

D>
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NN model Regularized regression equation
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Physics informed NN(PINN)

Add MSEppE to the loss function of NN model
* Adequate training of NN model
* Multi-objective optimization

_ 4 . )
Spatio- Partial
temporal - NN model "I differential
datasets terms
Regularized .
fficients [+ regression |* Regression
Coefficients equation
model
\_ /

M. Raissi et. al,”Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations.” Journal of Computational Physic, 378,
686-707, 2019



PDE derivation

Spatio-temporal
data

Loss =MSE,+ MSEgrg
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10.0

Case study
The training data set is generated from exact solutions of a PDE

Random sampling is conducted inside a given spatio-temporal region
Uniform neural networks are employed

The PDE derivation errors are visualized in a parameter space.

* Number of layers(N;): 1 < N;< 5

* Number of neurons(N,,): 1 < N,< 50

8

u(t,z) — —Ezact

<

<33
O

NSRS
bf(i‘: “

! *  Data (2000 points)
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Case study: KdV equation
The training data set is generated from a specific exact solution that describes one initial condition.
u(0,t) == sech?(5 (—t))

KdV equation is one of the nonlinear PDEs that describe the movement of waves
in a shallow, constant channel and is often applied to the analysis of traffic flow.

au 6 au 6 a 3u . u(t,z) — —Ezact
— = —06y—— 00— bty
ot 0x 0x3
Exact solution with parameters setto 6 = 1:
° ? ! ! ° ° * Datal(gOOO points)

1 1
u(x,t) = Esech2 (E (x — 1))

Rudy S H, Brunton S L, Proctor J L, et al. Data-driven discovery of partial differential equations[J]. Science Advances, 2017, 3(4): e1602614.



Derived results from the minimum partial derivative library
u(t.z) — —Eract

[ E 10
= Data (2000 points)

u(t.x) — — Prediction

04
N :
(.2
0.0
000l
o 0,000
~0.001
t
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0 5
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Derived result by extended partial derivative library

u(t,xz) — ~Ezact

10.0

10.0

7.5

25

0.0

t *  Data (2000 points)

0.2

0.0

10.0

0.002

75
45 50 0.000
25 —0.002
0.0 T
0 2 4 6 8 10
[4
t=2.5 t=5.0 t=17.5
10 1 10 o 1 10 1 !

Is this a new PDE created by the limitation of boundary

conditions?
0 5 0 5 10 0 5 10
o X xr

—  Fxact == = Prediction

Correct PDE

u; + 6uu, + lu,,, =0

Identified PDE (clean data)

us + 0.92477u; +.0.40510uu, + 0.28091u%u; + 0.0928930uszs = 0




Hyper-parameter space

Error(NN model/PDE derivation) distribution in a hyper-parameter space

For uniform neural networks, the space is 2-D.

The PDE derivation errors E¢.(N;, N,;) and NN model errors MSE,(N;, N,,)are
visualized in 2-D grids.

Number of layers(N;): 1 < N;< 5
Number of neurons(N,): 1 < N, < 50

11 ]2 13 14 |5 |6 |7 |3 |0 WM. Q47 148 149 |50

u A W NP

0.769355 0.757662 0.277344 0.096872 0.194649 0.774735 0.442238 0.320686 0.867174
0.480603 0.969215 0.221868 0.166101 0.588281 0.30394 0.548226 0.503627 0.616705
0.213615 0.868969 0.348935 0.431339 0.918797 0.271171 0.113798 0.555384 0.534507
0.842262 0.775692 0.09756 0.399266 0.706456 0.206162 0.755654 0.637287 0.344111
0.006591 0.581007 0.538789 0.993953 0.320453 0.198827 0.233933 0.846745 0.050477

0.500614 0.062523
0.610041 0.808881
0.829246 0.840274
0.367762 0.498399
0.731686 0.617719

0.925974 0.671173
0.460379 0.258919
0.092983 0.224193
0.578043 0.078828
0.787064 0.064282



Error(NN model) distribution

Chen, X., Chen, R., Wan, Q. et al. An improved data-free surrogate model for solving partial differential equations using deep neural networks. Sci Rep 11, 19507 (2021).

Error(NN model) distribution in
* The number of layers): 1 < N;< 10
* The number of neurons: 10 < N,,< 100

4e-02 |
le-02 -
4e-02 A
le-02
3e-02
le-02
3e-02
) 03 5
£ 8e-031 E
v o 2e-02
~ 6e-03 - ~
le-02 4
4e-03 1 le-02
2e-03 - 5e-03 4
Oe+00 - Oe+00 -
1 2 3 < 5 6 7 8 9 10 10 20 30 40 50 60 70 80 90 100
The number of layers The number of neurons per layer

(a) L?-error vs. layers (the number of neurons per layer is fixed at (b) L?-error vs. neurons per layer (the number of hidden layers is
50) fixed at 5)

Performances of different architectural designs obtained by varying the number of hidden layers and the number of neurons per layer.



Error visualization in NN hyper-parameter space

4 NN model error N PDE derivation error
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Case study: Advection-diffusion(Ad)equation

The training data set is generated from a specific exact solution that describes one initial condition.

#0,2) =0 (x>0)

Ad equation is a combination of the diffusion and convection (advection) equations, and
describes physical phenomena where particles, energy, or other physical quantities are
transferred inside a physical system due to two processes: diffusion and convection.

0p b _ 0%
ot Ox dx?

u(t,z) — —Ezact

t » Data (2000 points)

Exact solution:

bt z) = ~ exp( o) [exp(—%w) erfc(Qjm(x _ ct)) +exp(5a) erfc(g\/lm(a: + ct))]

Rudy S H, Brunton S L, Proctor J L, et al. Data-driven discovery of partial differential equations[J]. Science Advances, 2017, 3(4): e1602614.



u(t,z) — —Ezact

results from the minimum partial derivative library

Derived

04

-
t=0.1x t=0.157
10

t = 0.057
10

10

u(t, x)
u(t,z)
u(t,z)

0 T 0
0 5 0 5 0
xr xr xr
e Exact == = Prediction
Correct PDE w, +uu, — 0.1u,, =0
Identified PDE (clean data) | u, + 0.90576uu, + —0.1597469u,, = 0
ImiLerriduolrnidi 1oruiiri




Derived result by extended partial derivative library

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t *  Data (2000 points)

Is this a new PDE created by the limitation of boundary ‘\
conditions? ’

Correct PDE U + Uty — 0.1uz, =0
Identified PDE (clean data) | w; + —0.54061ug + 1.04304ut, + —0.1713265uz, = 0 N




Error visualization in NN hyper-parameter space

1 NN model error 4 PDE derivation error
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Case study

The training data set is generated from exact solutions of a PDE

Random sampling is conducted inside a given spatio-temporal region
General neural networks are employed

The PDE derivation errors are visualized in a parameter space.

* Number of layers(N;): 1 < N;< 10

* Number of neurons(N,,): 1 < N, < 512

u(t,z) — —Ezact

10.0

0 2 4 6 8 10
! *  Data (2000 points)




Hyper-parameter space

Error distribution in a parameter space

The PDE derivation errors and NN model errors are visualized using a multi-
dimensional visualization technique.

If we have the following restrictions:
* Number of layers(N;): 1 < N;< 10
* Number of neurons(N,,): 1 < N,,< 512
The errors are represented as
* E(Ny, Ng, Ni, N, Ng, N2, N, N, Ny, Ni°)
« MSE,(N} N2 N3 N N> N8 N7 N8 N N

334 443 130 129 386 204 366 113 0.989678
147 96 136 386 227 171 0 0 0 0 0.492013
52 283 114 457 79 179 494 0 0 0 0.090311
350 100 227 424 284 341 345 505 148 346 0.886385

A W N P

ok 376 89 397 250 0 0 0 0 0 o 0.889185



Error visualization using PCs

Optimization of NN structure

If the accuracy of the NN model is improved by changing the NN hyper-parameters, it is possible to clarify the

requirements of the NN structure that can maximize the accuracy of both the derivation of the partial differential
equation and the NN model.

s B} ~NE iR N al ~ A1 P BN V. B a W e NINIX MM I Naolel ol oY 1 =N [z B ol NEMm



Visual data science research

PDE SOLUTION FROM SPATIO-TEMPORAL DATA
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PDE solution

Background

* Previously, a local interpolation has been employed to evaluate the partial differential terms
* Effect from outside the local region cannot be considered.

* Aglobal approximation has been expected for the evaluation.

[ uy + buug + lug,, =10

4 Boundary condition points )
[ ]

e o Ut X1,¥1,21)

[ ] [ ]
u(ty, Xi, Yi» Zi)
[ ]

u(ty,, XN Yy Zy,)

\_ U(ty, X2, Y2, 22) /

[ Spatio-temporal points \
[ ]

® o (tg,X1,¥1,21) J
N

[ ]
(ti'xi' YVis Z.l) e

J

®  (tny XNy, YNy ZNy,)

\_ * tpxypz) . . .
Research question: Can we solve a PDE from given initial and boundary conditions?

Proposed method: If we add initial and boundary condition error terms to the loss
function, the question can be answered.



Proposed method

Solution of partial differential equations(PDEs) based on a given boundary
conditions

e Partial differential terms are given

o g Partial
our? .ary -+ NN model "I differential
conditions

terms

Spatio- \
temporal PDE Residuals
points \
/




verview

1D advection-diffusion equation

dy | dy Ly

0
dt die da?

Input the coefficients

comficient < cosficient &
.50 - = _
oy _dy dy
at "%y O lgpr =0
Boundary conditions
u=1 onz=0
u=0 onz=oc,
u(,0) = uglx) amt=0
Grid number
Number of x Humbereft
s0 - . s0e0
PINN parameters
[2.50,50,50,1
) —y 10 = 10
Learning Rate (5% Epochs
100 - . 10000

Apply



NN model from Spatio-temporal datasets

/ Boundary condition points \

BC .BC .BC .BC
u(ty™, xy ", y1 . 21°)

BC _BC .BC .BC
® u(elC xlC Yl 2P0

BC .BC .,BC . BC
u(th'prnyp'ZNp)

1 ~ 112
MSEy = — ||lu — ul|3

N,

Boundary condition points NN model




Partial differential terms from NN model

t Uy Uy Uy Uyy UyyUy,

NN model Partial differential terms
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Regression equation from partial differential terms

/ Spatio-temporal points
o

® (t1,X1,¥1,21)
® o

® (t,x,y:2) ®
o

e (Enyr XNy YNy ZNy,)

\ ®  (t3,x5,v1,21)

Partial differential terms

=
]
©

y O N T N N
u? 1 uz u} Uz ui ujy uz, £,
ul 1w u ui ud uj, us, guz
: — EE Do : £
u?’u_l 1 uivu_l u;,V“_l ug“_l 55—1 ;}v;—1 ;vzu—1 zuyy
uztvu 1w u;,V“ wr ui,vg,‘ upr e

\ ] J
I |
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Regression equation




PDE residuals

Og| |3

|[u;

MSEppE

L)

PDE residuals

NN model
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Physics informed NN(PINN)

Add MSEppE to the loss function of NN model
* Adequate training of NN model
* Multi-objective optimization

4 . )
b g Partial
our? .ary -+ NN model "I differential
conditions
terms
Spatio-
temporal PDE Residuals
points \ -
\_ J

M. Raissi et. al,”Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations.” Journal of Computational Physic, 378,
686-707, 2019



PDE solution
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Case study: Ad equation

The training data set is generated from a specific exact solution that describes one initial condition.

9, 5, 0% _
o 0P _ 070 $(0,z) =0 (z>0)
ot dx dx?
The equation is a combination of the diffusion and convection (advection) equations, and describes

physical phenomena where particles, energy, or other physical quantities are transferred inside a
physical system due to two processes: diffusion and convection. .

Exact FEM

S oo N Proposed

Exact squtlon.

o(t,z) = 1 exp( 2; :c) [exp (—%w) erfc(m/lm (x — ct)) + exp(%a}) erfc ( 2\/1Ft($ + ct))]

MPS 1.27 x 10! Proposed 1.42 x 1072




PDE solution system

Equation properties
Equation form / cofficients .
~— » Solution images
Boundary (/ initial) conditions Visualization
PINN properties (Comparison)
Error images

Network structure
Loss images
Network structure
Number of samples
Domain
Boundary
Initial
Learning rate

Epochs

Resolution of solution image



Visualization System (Streamlit)

PINN solution

1D advection-diffusion equation

dy ¢ Ldy ”n""g,'

t 0
di dx dz?
Input the coefficients
coefficient C coefficient D
0.50 — + 0.10
dy . dy d*y
dt “")rh‘ 01 dax? 0

Boundary conditions

u=1 onzx =0,
u=0 onz 00,
w(x,0) = ug(x) ont=0.

Grid number

Number of x Number of t

50 = i 5000

PINN parameters

Network Structure

[2,50,50,50,1]

Domain samples

80 - +

Learning Rate(%o)

1.00

Apply

Boundary samples

10 =

Epochs

- * 10000

Initial samples

10

xact solution FDM solution

*
DM Error (ave: 0.014445460338055601, max: PINN Error (ave: 0.05529761607312982, max:
.9733582769672358) 0.8793359845876694)
10 10
08
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0ss
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10° 4 —— Train loss
\ —— Test loss
\ —— Test metric
\
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10—2 4
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*
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Visual analysis and its requirements

Clarify how much the point data and the constructed NN model match in spatio-

temporal space (Research contents 1, 2)

Clarify how the diversity in the partial differential terms and boundary conditions

decrease the PDE derivation error (Research Content 3)

Clarify how the NN model parameters and the number of points decrease the PDE

derivation and solution error (Research content 3)

Analyze the PDE solution error in local and global regions, with conventional
methods (Research content 4)

Clarify how to select the partially differentiated term candidates using EDM.

Research content 1

=

.........

- ,
Point data_

*
*

Knowledge discovery

content 49

POEM: - AR
dyy + 15Uz,

\

Resea rdicontent3

NNEFJL

(22
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Empirical dynamic modeling(EDM)

A Visual Analytics Approach for the Identification of
System States based on Empirical Dynamic Modeling

Empirical
Dynamic
Sl ==

) muummﬂ

Hiroaki NATSUKAWA*, Ethan DEYLE**, Koji KOYAMADA*, George SUGIHARA**

*Kyoto University, Academic Center for Computing and Media Studies
**UC SanDiego, Scripps Institution of Oceanography



Summary

Our visual data science meets Al through PINN
Universal function approximation

AD for partial differentiation terms

Application examples
Page extraction from booklet data captured by 3D-CT

Extraction of plasma region from electromagnetic field analysis
results in fusion reactor

Derivation and solution of PDEs

Rendering of a neural network volume
Indirect approach by mapping the volume to grid

Direct approach, ray-tracing using automatic integration

David, et al,” Autolnt: Automatic Integration for Fast Neural Volume Rendering” CVPR2021
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Diversity and inclusion

1. We should consider diversity to share a future
2. Diversity requires tremendous mount of different conditions

https://www.generationsforpeace.org/en/op-ed-how-can-cultural- https://www.kensetsunews.com/web-kan/502950
diversity-drive-peace-and-development/
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